Understanding GP Evolution using Entropy & Compression

Bob McKay

Structural Complexity Laboratory

sc.snu.ac.kr

School of Computer & Engineering
Seoul National University
Outline

• Entropy and Compression: Why?

• Detour
 – Expression Simplification

• Subtree Entropy Measurement
 – Results

• Measuring Regularity with Compression
 – Results
Thanks to...

- Daryl Essam
- Hao Hoang
- Moonyoung Kang
- Naoki Mori
- Xuan Nguyen
- Jungseok Shin

• (but I take full responsibility)
Evolution
Darwinian Evolution (1850s)

Multiple populations competing for limited resources

Dynamically changing populations with births and deaths

Inheritance: children are like their parents

Variation: children are not exactly the same as their parents

Fitness: different individuals have different probabilities to survive and reproduce
Tree Based Genetic Programming

• Original Idea:
 – Evolve populations of trees representing problem solutions
 – Cramer (1985); Schmidhuber (1987); Koza (1992)
 • Closure assumption: any function can apply to any argument
Stochastic Variation Operator: Mutation

- Randomly choose a node in the parent tree
- Delete the sub-tree below that node
- Generate a new random sub-tree
Stochastic Variation Operator: Crossover

• Randomly choose a node in each parent tree
• Exchange the sub-trees rooted at those points
Some Issues in Understanding GP
Genetic Programming: Bloat

• Very fast growth of code size

• There is a range of explanations
 – A protection mechanism against the destructive effects of crossover
 – A result of selection pressure
 • With a linear genome and some reasonable choices of crossover operators, code actually shrinks in the absence of selection pressure
 – An equilibrium seeking behaviour within the population of fit programs
 – …

• Bloat often takes the form of introns - non-functional segments of code
 – ‘Not not’ ‘If true then …’
 – ‘* 1’ ‘+ 0’
Bloat

- GP solutions tend to grow unboundedly...
 - Heavily studied
 - In isolation from Diversity and Generalisation Studies
 - Measures to combat bloat generally reduce diversity
 - Bloat is also closely related to generalisation
Bloat Example: Can’t Understand

- IF \text{stand} = \text{outside_study} \text{ THEN} \text{absent}

- IF (\text{WITHIN} 2 \text{ EXISTS} (((NOT (((NOT \text{quality} \geq \text{low}) \text{ AND } ((NOT \text{floristic} \leq \text{medium}) \text{ AND } \text{stand} < \text{high}))) \text{ AND } ((\text{quality} = \text{medium} \text{ AND } (\text{quality} > \text{outside_study} \text{ AND } \text{floristic} < \text{medium}))) \text{ OR } (((NOT \text{floristic} \leq \text{medium}) \text{ AND } \text{stand} < \text{high}) \text{ AND } (\text{slope} = \text{moderate} \text{ OR } \text{slope} \geq \text{moderate}))) \text{ AND } (((\text{slope} > \text{steep} \text{ OR } \text{stream} > \text{no_stream_corridor}) \text{ AND } ((NOT \text{stand} \leq \text{low}) \text{ AND } \text{stream} > \text{no_stream_corridor}))) \text{ AND } (NOT (NOT (NOT (\text{stream} > \text{no_stream_corridor} \text{ OR } \text{stand} = \text{low}))) \text{ OR } (\text{floristic} = \text{outside_study} \text{ OR } \text{quality} \geq \text{low}) \text{ AND } (\text{floristic} < \text{high} \text{ OR } \text{stand} < \text{high}))) \text{ OR } (\text{WITHIN} 2 \text{ EXISTS } \text{stand} = \text{regeneration} \text{ OR } (\text{stream} = \text{no_stream_corridor} \text{ OR } \text{stand} = \text{low}))) \text{ THEN} \text{rare}

- IF (NOT (\text{WITHIN} 1 \text{ EXISTS} (((\text{quality} < \text{medium} \text{ OR } \text{stand} = \text{regeneration}) \text{ AND } ((NOT \text{floristic} < \text{outside_study}) \text{ OR } \text{stand} < \text{rock}))) \text{ AND } (NOT \text{WITHIN} 2 \text{ EXISTS } (((\text{NOT} \text{dev} > \text{road_corridor}) \text{ AND } ((\text{slope} < \text{moderate} \text{ AND } (\text{quality} \leq \text{outside_study} \text{ AND } \text{floristic} < \text{medium}))) \text{ OR } ((\text{slope} \leq \text{steep} \text{ AND } \text{stand} < \text{low}) \text{ AND } (\text{slope} > \text{moderate} \text{ OR } \text{floristic} \leq \text{medium}))) \text{))) \text{ THEN} \text{common}

- IF (((\text{stand} \geq \text{regeneration} \text{ AND } \text{stand} \geq \text{outside_study}) \text{ AND } (NOT (\text{stream} \geq \text{no_stream_corridor} \text{ AND } \text{floristic} \leq \text{medium}))) \text{ OR } (((\text{floristic} = \text{outside_study} \text{ OR } \text{slope} = \text{steep}) \text{ AND } (((\text{slope} \leq \text{steep} \text{ AND } \text{stand} < \text{low}) \text{ AND } (\text{slope} > \text{moderate} \text{ OR } \text{floristic} \leq \text{medium}))) \text{ OR } \text{floristic} \geq \text{low}))) \text{ THEN} \text{abundant}

- ELSE \text{DEFAULT} \text{ abundant}
Example with Bloat Removed

- IF stand = outside_study THEN absent
- IF (WITHIN 2 EXISTS
 - ((quality ≥ low AND floristic = high AND stand < high AND slope > low)
 - OR (quality = medium AND floristic = low))
 - AND ((stand = medium AND stream = stream_corridor AND floristic = high)
 - OR (WITHIN 2 EXISTS
 - stand = regeneration OR stream = no_stream_corridor OR stand = low)))
 - THEN rare
- IF (NOT WITHIN 1 EXISTS (quality = low OR stand = regeneration)
- OR (WITHIN 2 EXISTS(dev ~= pine_plantation AND stand < low
 - AND (slope =steep OR floristic ≤ medium))))))
- THEN common
- ELSE DEFAULT abundant

Issues
Can bloat be controlled?

• Many attempts to control bloat by eliminating introns

• It is possible to eliminate introns in some simple domains (eg Boolean)

• Generally not possible in more complex domains
 – In continuous domains, evolution just replaces exact introns with approximate introns
 • code which is very nearly ineffective
 – Or effective code is placed into non-operational code segments
 – In general, it is un-computable whether code is ineffective

– Eliminating bloat may (generally does) conflict with the goal of preserving diversity
Training Accuracy vs Generalisation

- There is a well-known trade-off between model complexity (and accuracy) and generalisation to new data
 - More complex (and accurate) models generalise less well

- Little studied in GP
- Bloat puts pressure on complexity of effective code
 - because it uses up code space
- Gives some parsimony pressure
 - But accidental and uncontrolled
Size Limits and Introns

• with a bounded genome size
 – Introns occupy code space
 • Without adding to information to the genome
 – Hence introns reduce the degrees of freedom of the genotype
 – Provide an indirect parsimony pressure
 – Improve generalisation
 • An ad-hoc but effective, mechanism
 – But the degree of parsimony pressure is accidental and uncontrolled
Parsimony Pressure and Genetic Programming

• Wide range of methods attempted to impose parsimony pressure on the genome.... But...
 – When fitness is low (early evolution), parsimony pressure dominates
 – Results in convergence to population of very small individuals - loss of genetic diversity

• Requires changing parsimony pressure
 – Difficult to tune parameters for parsimony pressure
Diversity

- GP systems may converge before they find good solutions
 - Most study derived from Genetic Algorithms
 - But Genetic Algorithms don’t have bloat interactions…
 - GP algorithms may be converged
 - Same effective solutions
 - But still diverse in their tree forms
Possible Solution: Parsimony and Diversity

• Impose parsimony pressure continuously

• Directly oppose convergence pressure with a diversity-promoting mechanism
 – Fitness sharing
 • Difficult to combine with parsimony pressure
 – Should the parsimony fitness be shared? How?
 – Anticorrelation penalties
 • Difficult to find anticorrelation penalties with compatible dimensionality with parsimony
 – Information based accuracy, parsimony and anticorrelation measures

• Disappointing results so far
Modularity and Hierarchy in GP

- Modularity rarely arises naturally in GP systems
 - It is usually ‘built in’
 - Automatically defined functions (ADF)
 - Automatically defined macros (ADM)
- Regular structure virtually never emerges in GP genotypes
Regularity and Scalability

• **GP Does not find** regularly structured solutions:

 • IF stand = outside_study THEN absent

 • IF (WITHIN 2 EXISTS ((NOT ((NOT quality ≥ low) AND ((NOT floristic ≤ medium) AND stand < high)))) AND ((quality = medium AND (quality > outside_study AND floristic < medium)) OR (((NOT floristic ≤ medium) AND stand < high) AND (slope = moderate OR slope ≥ moderate)))) AND (((slope > steep OR stream > no_stream_corridor) AND ((NOT stand ≤ low) AND stream > no_stream_corridor)) AND (NOT (NOT (NOT (stream ≥ no_stream_corridor AND floristic ≤ medium))))) AND (((stream = no_stream_corridor OR stand = low) AND (NOT slope ≤ moderate)) OR ((floristic = outside_study OR quality ≥ low) AND (floristic < high OR stand < high))) OR (WITHIN 2 EXISTS stand = regeneration OR (stream = no_stream_corridor OR stand = low))) THEN rare

 • IF (NOT (WITHIN 1 EXISTS ((quality < medium OR stand = regeneration) AND ((NOT floristic < outside_study) OR stand < rock)) AND (NOT WITHIN 2 EXISTS ((NOT dev > road_corridor) AND ((slope < moderate AND (quality ≤ outside_study AND floristic < medium))OR ((slope ≤ steep AND stand < low) AND (slope > moderate OR floristic ≤ medium)))))) THEN common

 • IF (((stand ≥ regeneration AND stand ≥ outside_study) AND (NOT (stream ≥ no_stream_corridor AND floristic ≤ medium)))OR ((floristic = outside_study OR slope = steep) AND (((slope ≤ steep AND stand < low) AND (slope > moderate OR floristic ≤ medium))) OR (floristic ≥ low))) THEN abundant

 • ELSE DEFAULT abundant
Regularity and Scalability

• **Simplified version:**
 - IF stand = outside_study THEN absent
 - IF (WITHIN 2 EXISTS
 - ((quality ≥ low AND floristic = high AND stand < high AND slope > low)
 - OR (quality = medium AND floristic = low))
 - AND ((stand = medium AND stream = stream_corridor AND floristic = high)
 - OR (WITHIN 2 EXISTS
 - stand = regeneration OR stream = no_stream_corridor OR stand = low)))
 - THEN rare
 - IF (NOT WITHIN 1 EXISTS (quality = low OR stand = regeneration)
 - OR (WITHIN 2 EXISTS(dev ~= pine_plantation AND stand < low
 - AND (slope =steep OR floristic ≤ medium)))))
 - THEN common
 - ELSE DEFAULT abundant

• **This excess complexity makes it difficult for GP to learn incrementally tougher problems**
We Need to Understand:

- Individual complexity
- Diversity
- Generalisation
- Regularity
What’s Wrong with Previous Analyses?

- Study separately
 - Individual complexity
 - Usually measured as size, depth
 - Diversity
 - Variety of different metrics
 - Generalisation
 - Little studied (Kushchu - late 1990s)
 - Regularity
 - Little studied
 - Hornby 2006: studied modularity in ADFs and similar systems
 » Metrics require explicit modularity, not useful for studying emergence
Our Aims

• Use related methods to study
 – Individual complexity
 – Population complexity
 – Generalisation and error
 – Solution regularity

• Study both
 – Complexity of raw individuals
 – Complexity of effective code within individuals

• Intuition:
 – These aspects of GP interact
 – So we can’t understand them in isolation
Preliminary: Expression Simplification
Redundancy in GP Arithmetic Expressions

- Neutral part: $0 \cdot f(x)$
- Redundant part: $1 \cdot f(x)$

• Aim
 - To simplify expressions
Previous Work on Redundancy

- Algebraic simplification
 - Rules such as $1*f(x) \rightarrow f(x)$

- Hard to define universal rules
 - $(f(x)-1)+(1-f(x))$
 - Functions may only be redundant given data instances
 - $\sin nx$ when n instances evenly spaced in $-\pi \ldots \pi$
 - Equivalences may be inexact
 - $\pi \approx 4 \sin(\sin(2))$
Equivalent Decision Simplification

• Identify a suitable set of ‘simple’ trees

• (Recursively) check every subtree for equivalence (on fitness instances) to a ‘simple’ subtree, and replace
 – E.g. if constants are in ‘simple’ set and given appropriate instances
 • Replace \(\sin nx \) by 0

• Advantages
 – We don’t need to pre-define equivalences
 – We can handle equivalences only on the sample points
 – We can handle approximate equivalences
Sample Problem

- **Symbolic Regression**
 - 1000 runs, 500 population, 200 generations
 - Target function $\cos 2x$, range $-\pi \ldots \pi$, randomly selected target instances
 - Function set $+ - * / \sin$

- **Analysis divided into three sets of 100 runs**
 - Runs which find a solution within 20 generations
 - Highly successful
 - Runs which find a solution between 50-69 generations
 - Moderately successful
 - Runs which find no solutions
 - Unsuccessful
Equivalent Decision Effectiveness

- Typical GP population from symbolic regression
 - Solutions found by the ‘high success’ runs
 - 102,534 different solution genotypes reduced to three solutions of size 12
 - Average prior size 138.2
 - So over 90% of individuals was redundant code
 - Evidence (see later) we have found effectively all simplifications

- Comparison with typical algebraic simplification
 - Average size 15.1
 - Only 39% reduce to size 12
 - 57 genotypes retain over 100 nodes
 - Worst case 214 nodes
 - Seriously affects analyses based on algebraic simplification
Entropy Measurement
Entropy

Complicated Solutions

Loss of Diversity

Poor Accuracy

Information Theory to Understand Genetic Programming
Entropy

- Given a set of events $x_1 \ldots x_n$ with probabilities $p(x_i)$

- Entropy is $\sum_{i=1,n} - p(x_i) \log p(x_i)$

- The minimum number of bits required to transmit a message describing the probability distribution

- Entropy provides a means to measure
 - Population complexity
 - Individual complexity
 - Model accuracy
 - Between-runs complexity

- Problem:
 - Not clear how to measure entropy of GP trees
 - Approximation required
Entropy Estimates

• Entropy of single nodes
 – Effectively, entropy of node content
 – Ignores structure

• Entropy of subtrees
 – Size n=2, 3, 4,…
 – Large n gives too many possible events
 – Most bins empty, estimate of entropy inaccurate
 – 4 is largest feasible size
Subtree templates

- Initial work estimated entropies of different templates
Template Results

- Subtree Population entropy by generation
- Higher order templates generally similar
- Rest of work uses template 3a
What we could analyse before...

- Individual size
 - Left: Original
 - Right: Simplified
What we could analyse before...

- Phenotype Entropy
New Analyses: Simplified Entropy

- Left: Population Entropy (original trees)
- Right: Population Entropy (simplified)
 - Note similarity to phenotype entropy
New Analyses: Subtree Entropy

- **Original**
- **Simplified**

- **Individual**

- **Population**
Subtree Entropy: What did we learn New?

- **Individual entropy:**
 - Very different courses of original and simplified entropies
 - Much lower simplified entropy

- **Population entropy**
 - Far lower simplified entropy

- **Comparison**
 - Ability to numerically compare individual and population entropies
 - Potential for theoretical analysis and explanation
Entropy: future work

- Current work relates population entropy (diversity) and individual entropy (complexity, bloat)
- Future work aims to explore inclusion of entropy-based accuracy measurements in learning problems
Compression and Regularity
Homeobox Genes

• Control the segmentation of animals
 – (even in less apparently segmented animals such as ourselves)

• Manipulating homeobox gene control permits the growth of legs on heads, or eyes on body segments
Homeobox Genes as Subprograms

• Homeobox genes act as subroutines
 – Molecular gradients take the role of parameters, controlling detailed structure of the segment

• Homeobox genes may activate further homeobox genes, permitting a hierarchical cascade of organisation
Underlying issue

• Natural systems generate genotypes far more regular than artificial
 – In fact, natural evolution proceeds largely by copying genes and then varying them

• We believe this regularity is important for the scalability of natural evolution
 – (compared with poor scalability of GP)

• We’ve generated a couple of GP systems aimed at evolving more regular solutions
 – Perform well
 – But we’d like to argue the good performance/scalability result from the regularity bias
 – Need to at least show that the solutions are more regular

• How to measure?
• The more regular the structure, the more the item can be compressed

• The more the item can be compressed, the more regular the structure
Compression to Measure Regularity

• Use compressibility to measure complexity
 – Compress the data
 • Individual trees
 • Populations
 • Populations across runs
 • …
 – Measure the compression ratio
 – Use the compression ratio to estimate regularity
 • The more compressible, the more regular

• Of course, we need lossless (reversible) compression algorithms
Issues (1)

- Standard compression algorithms are designed for string compression
 - If we use a string representation of the tree, the compression are biased toward particular regularities
 - Eg preorder representation biases regularities in left children

- Solution: use tree compression algorithms
 - Fortunately, XML compression is currently a hot issue
 - We use XMLPPM, an excellent tree compression algorithm
 - Tree version of Predict-by-Partial-Match
 - Statistical compressor
 - Slower but substantially better compressors than dictionary based
 - LZ, gif
Issues (2)

• Originally, we just directly used compression ratio

• Problem: it is more difficult to compress small trees
 – Led to bias in compression
 • Algorithms with smaller trees give smaller compression ratios
Fixing Issue 2

• For XMLPPM
 – Random ‘grow’ trees are minimally compressible
 – Linear trees are maximally compressible
 – Measure maximal and minimal compression at a given size
 – For a given tree, population or whatever
 • Report the ratio between this tree, linear and random trees of the same size
Sample Problem

• Symbolic regression, $1+x+x^2+x^3+\ldots+x^9$
 - Find a function fitting 20 points
 - Expected to favour regular, structured solutions

• Algorithms
 - GP, TAG-GP, TAG plus development, TAG plus evaluation during development
 • Expected to promote genotype regularity
• Background only, not the important point for this talk
Regularity of Individuals

- Effectively, measures how self-similar individuals are

- Unsimplified

- Simplified
Regularity of Populations

- Measures how self-similar populations are
 - A way of measuring building block diversity

- Un simplified

- Simplified
Regularity between Runs

- Measures how much different runs discover the same building blocks

- Ununsimplified

- Simplified
Further Work

- Modify XMLPPM
 - Generate the compression model from one population
 - E.g. generation
 - Compress the population from a different population
 - Permits study of the inter-generational preservation of building blocks
 - How much do the building blocks in generation k still exist in generation $k+1$
Conclusions
Conclusions

• Equivalent Decision Simplification allows us to study the behaviour of effective code

• Subtree entropy allows us to understand the interaction of individual and population complexity (bloat and diversity)
 – Long-term belief: understanding GP systems requires an understanding of the information flows between individual complexity, population complexity and data

• Compression allows us to understand the behaviour of building blocks within and between populations, and even between run
 – Maybe even preservation of building blocks
The End

谢谢

감사합니다